
Learning gem5 – Part IV
gem5 execution model, ISAs, and CPUs

Jason Lowe-Power
http://learning.gem5.org/

https://faculty.engineering.ucdavis.edu/lowepower/

Jason Lowe-Power <jason@lowepower.com> 1

http://learning.gem5.org/
https://faculty.engineering.ucdavis.edu/lowepower/


Outline

ISA independence and execution model

LearningSimpleCPU

gem5’s many CPU models and types of execution

Full system vs Syscall emulation mode

Jason Lowe-Power <jason@lowepower.com> 2



gem5 ISAs

src/arch/

alpha

arm

hsail

mips

power

riscv

sparc

x86

Jason Lowe-Power <jason@lowepower.com> 3

Not all equally well 
supported. ARM, X86
most used/tested.

Each directory contains 
devices, ISA-specific 
objects, system 
interface, ISA definition



ISA definition

src/arch/<isa>/isa

A domain-specific language for ISAs

Written in python (src/arch/isa_parser.py)

Honestly, very confusing, not much documentation

Output in build/…/generated

Decodes instructions (decoder/*.isa)

Implements instructions (insts/*.isa)

This is what is called when an instruction “executes” (we’ll see)

Creates “StaticInst” classes

Jason Lowe-Power <jason@lowepower.com> 4



StaticInst

src/cpu/static_inst.hh

Describes the kind of instruction (isNop(), isInteger(), etc.)

Provides implementation for execution (parameter: ExecContext)

execute(…)

initiateAcc(…)

completeAcc(…)

advancePC(…)

Jason Lowe-Power <jason@lowepower.com> 5

execute: Modify ExecContext based on instruction 

initiateAcc: Send memory reference

completeAcc: Like execute for mem insts

advancePC: ISA-specific



LearningSimpleCPU

Too much code to go through it all

Jason Lowe-Power <jason@lowepower.com> 6

> git remote add jason-github \

https://github.com/powerjg/gem5.git

> git fetch jason-github

> git checkout learningsimplecpu

Should be in mainline…



LearningSimpleCPU

Step 1: Create SimObject

Step 2: Initialization logic

Step 3: Memory request wrapper

Step 4: fetch, decode, execute, writeback

Jason Lowe-Power <jason@lowepower.com> 7

Switch!



The CPU SimObject

Simple unified master port for sending requests

Like SimpleMemObject

SimpleThread: The thread stores the hardware thread context (regs…)

Must override

init(), startup(), activateContext(), , wakeup(), getPorts, totals

Jason Lowe-Power <jason@lowepower.com> 8



MemoryRequest

Simplifies memory by encapsulating all request/response

Could be used in LSQ implementation…

Provides

translate()

send()

Needs from CPU

finishFetchTranslate()

finishDataTranslate()

decodeInstruction()

dataResponse()

Jason Lowe-Power <jason@lowepower.com> 9



LearningSimpleCPU steps

1) Fetch event (fetch(Addr))
1) Translate the instruction address (calls finishFetchTranslate)

2) Read memory at the instruction address (calls decodeInstruction)

2) Decode (decodeInstruction(PacketPtr))
1) Call moreBytes to prime decoder

2) Call decode to get the StaticInst

3) Execute instruction (executeInstruction(StaticInstPtr))
1) If memory: call initiateAcc, wait for translation, and then send request

2) Otherwise, execute the StaticInst

4) Increment the PC and schedule another fetch event

Jason Lowe-Power <jason@lowepower.com> 10



CPU Models

gem5 exposes a flexible CPU interface

AtomicSimpleCPU: No timing. Fast-forwarding & cache warming.

TimingSimpleCPU: Single-cycle (IPC=1) except for memory ops.

O3CPU: Out-of-order model. Highly configurable.

MinorCPU: In-order model (not fully tested with x86)

kvmCPU: x86 and ARM support for native execution

© Jason Lowe-Power <jason@lowepower.com> 11



Memory modes

Timing

Used for simulation

Calls sendTimingRequest, etc.

All timing is modeled

Atomic

No timing

Used for fast-forwarding

Some structures are warmed up

Atomic_noncaching

Used for KVM CPU

Directly manipulates the 
backing memory

Jason Lowe-Power <jason@lowepower.com> 12



Questions?

We covered

How ISAs work

How CPUs execute

gem5’s CPU models

gem5’s memory modes

Jason Lowe-Power <jason@lowepower.com> 13


